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Abstract: Cannabis use may be considered as an additional risk factor in a diathesis-stress model of schizophrenia where the risk of de-

veloping the illness would be higher in genetic vulnerable people. In this regard, much of the research on cannabis and psychosis is cur-
rently focusing on gene-environment interactions. The present review will focus on the interaction between genes and cannabis exposure 

in the development of psychotic symptoms and schizophrenia and the biological mechanisms of cannabis. Cannabis use has been shown 
to act together with other environmental factors such as childhood trauma or urbanicity producing synergistic dopamine sensitization ef-

fects. Studies on gene-environment interaction have mainly included genetic variants involved in the regulation of the dopaminergic sys-
tem. The most promising genetic variants in this field are COMT, CNR1, BDNF, AKT1 and NRG1. Additionally, the interaction with 

other environmental factors and possible gene-gene interactions are considered in the etiological model.  
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INTRODUCTION 

 Cannabis is probably the most commonly used illicit addictive 
substance among patients with schizophrenia, with a lifetime preva-
lence of cannabis use disorders higher than 25% [1]. The use of 
cannabis has been reported to be higher in patients suffering their 
first episode showing rates of cannabis use of nearly half of the 
patients [2]. This use of cannabis has been consistently associated 
with relapse and non adherence in patients with schizophrenia, but 
associations with clinical severity are more disparate [3]. Addition-
ally, a causal relation between cannabis and psychosis has been 
suggested. 

 For some healthy individuals, cannabis use may be accompa-
nied by psychotic experiences and neurophysiologic alterations that 
are similar to those seen in schizophrenic patients [4-6] Psychotic 
symptoms are usually self-limited, but in some cases, the psychotic 
manifestations associated with cannabis use are eventually followed 
by schizophrenia, a chronic and invalidating illness [7]. 

 In 1987, The Lancet published an epidemiological study by 
Andreasson et al. examining the risk of hospitalization for schizo-
phrenia in a cohort of Swedish cannabis and non-cannabis users 
over a 15-year period. Psychiatric admissions were 6.0 times more 
common in regular cannabis smokers and 2.3 times more frequent 
in occasional smokers than in subjects who had never smoked can-
nabis [8]. 

 In 2002, Zammit et al. reanalysed the same sample of Swedish 
patients after adjusting the results by the dose of cannabis used and 
found that in the group of patients with the highest cannabis use 
( 50 times), the odds ratio of developing schizophrenia was 3.1 [9]. 
In a recent published study from this group, the risk of developing 
schizophrenia was again 3.7 among frequent cannabis users com-
pared with non-users after 35 years of follow up [10]. Other studies 
with prospective designs have also shown an increased risk of de-
veloping psychosis after using cannabis [4, 7]. Ultimately, several 
meta-analyses have consistently showed that the use of cannabis  
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is associated with a twofold risk of developing psychotic symptoms 
or a psychotic illness [11, 12], after adjustment for factors such as 
age, sex, social class, ethnicity, urbanicity, and use of other drugs.  

 In contrast, it has been argued by some authors that only a mi-
nority of cannabis users develop psychosis. The observed dose 
response effect [4, 9] may partly explain this fact. In addition, some 
studies have suggested that exposure to cannabis in a vulnerable at 
a young age (early adolescence) may be related to a much higher 
risk of developing psychosis than cannabis use in later years [13]. 
Finally, cannabis use may be considered as an additional risk factor 
in a diathesis-stress model of schizophrenia where the risk of de-
veloping the illness would be higher in genetically vulnerable peo-
ple. In this regard, much of the research on cannabis and psychosis 
is currently focusing on gene-environmental interactions and their 
involvement in the pathogenesis of psychosis [14, 15].  

 Growing evidence suggests that the combination of certain 
genetic factors with environmental exposures such as cannabis use 
may significantly increase the risk of developing schizophrenia. In 
light of theses findings, the present review will focus on the puta-
tive mechanisms of action of specific genetic variations and envi-
ronmental factors during the onset of a first episode of psychosis.  

NEUROPHYSIOLOGY OF CANNABIS 

The Endocannabinoid System 

 The human endocannabinoid system consists of endocannabi-
noid receptors and the endogenous endocannabinoids. There are 
two types of human endocannabinoid receptors: CB1 and CB2. The 
CB1 receptors were first described in the brain in 1988 [16]. CB1 
receptors are found in the limbic system (hippocampus and 
amygdala), the basal ganglia, the cerebellum and the prefrontal area 
at GABAergic and glutamatergic terminals [17].  

 CB1 receptors are G-protein coupled receptors and adenylcy-
clase inhibitors that stimulate the activity of protein kinases A [18] 
and which in turn inhibit certain calcium channels while activating 
potassium channels. This combined effect could explain the inhibi-
tory action of endocannabinoids on the liberation of neurotransmit-
ters such as dopamine in the ventral tegmental area-mesolimbic 
pathway [19]. 

 CB2 cannabinoid receptors have a similar structure to CB1 
receptors [20], although their proportion in the central nervous sys-
tem is much lesser than for CB1 receptors [21]. 
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 CB1 and CB2 receptors have different types of ligands both 
endocannabinoid (such as anandamide and 2-arachidonoilglycerol) 
and non endocannabinoid [16, 22]. Unlike some other neurotrans-
mitters that can be synthesized and stored for later use, endocan-
nabinoids are generated and liberated on demand and their synthesis 
is modulated by intracellular calcium concentrations [23]. It is 
thought that endocannabinoids mediate short and long term depres-
sion of synaptic strength via retrograde transsynaptic signalling 
[24]. In fact, CB1 receptor agonists act as retrograde synaptic me-
diators of the phenomenon of depolarization-induced suppression of 
inhibition (DSI) and excitation (DSE). Thereby, they reduce neuro-
transmission in GABAergic neurons of the striate nucleus and glu-
tamatergic neurons in the dorsolateral striate nucleus [24, 25]. In 
this sense, the activation of CB1 receptors protects the nervous 
system against the overactivation or the overinhibition produced by 
GABA and glutamate neurotransmitters.  

 Some authors have explored the relation between the cannabi-
noid and dopaminergic systems to better explain the link between 
cannabis and psychosis [26]. It has been found that an acute expo-
sure to exogenous cannabinoid substances activates the dopamine 
D2 receptors of the striate nucleus [27, 28], increasing striatal do-
pamine levels. Even though other authors have also described clear 
inhibiting effects of cannabinoids on dopaminergic neurons [29], it 
seems that cannabinoids produce an increase in dopamine levels in 
the nucleus accumbens and the ventral tegmental area [30]. In hu-
mans, increases in dopamine levels in the mesolimbic cortex, striate 
nucleus and dorsal precommisural putamen after cannabis use have 
been reported in patients with schizophrenia [31] and healthy sub-
jects [32, 33], using SPECT and PET neuroimaging techniques. 
Inversely, a significant reduction of ligand binding was seen at the 
levels of the frontal and temporal lobes [34]. Finally, animal model 
studies have suggested that a prolonged exposure to cannabis could 
sensitize CB1 receptors [35] and eventually reduce prefrontal levels 
of dopamine in rats [36]. Taken together, these data suggest that 
acute exposure to exogenous cannabinoids activate D2 receptors 
and dopaminergic transmission in striatum and mesolimbic areas 
whereas prolonged exposure to cannabinoids results in a reduction 
of the dopamine in the prefrontal cortex.  

Exogenous and Endogenous Cannabinoids 

 Delta-9-tetrahidrocannabinol (THC), the main psychoactive 
substance in cannabis, acts as an agonist on CB1 cannabinoid re-
ceptors [37] and inhibits the liberation of neurotransmitters from the 
nerve terminals expressing CB1 receptors, consequently preventing 
DSI and DSE phenomenon [38]. THC and other exogenous can-
nabinoids also increase dopaminergic activity of neurons from the 
ventral tegmental area, an important pleasure-mediating centre [39] 
and in mesolimbic reward centres, at the nucleus accumbens [30]. 

 The endocannabinoid 2-arachidonoyl-glycerol or 2-AG, as well 
as anandamide to a lesser extent, have been shown to act as modu-
lators of glutamate release via an inhibitory effect on presynaptic 
CB1 receptors. 2-AG can reduce the release of glutamate especially 
in regions of the central nervous system involved in the patho-
physiology of schizophrenia, such as the hippocampus [40], the 
prefrontal cortex [41], the nucleus accumbens [42] and the 
amygdala[43]. This glutamatergic hypoactivity in the prefrontal 
cortex could be related to the prefrontal dopaminergic hypofunction 
of patients with schizophrenia, mediated by NMDA/D1 receptor 
complexes. In addition, glutamate release in the mesolimbic system 
of both patients with schizophrenia and cannabis users have been 
shown to be reduced compared to non cannabis users [41]. Post-
mortem studies have shown a global increase in the number of CB1 
receptors of patients with schizophrenia and a reduction of CB1 
receptors and CB1 messenger RNA in the prefrontal area of these 
patients [44]. This accounts for a reduction in GABA release by 
presynaptic prefrontal neurons [45] and could help explain the 
seemingly paradoxical “therapeutic effect” attributed to cannabis by 

certain patients, especially in those where negative symptoms are 
predominant. 

 At the striatal level, the release of glutamate stimulates the pro-
duction of 2-AG through postsynaptic mGLUR5 receptors, which 
in turn suppresses glutamate release through a negative feedback 
mechanism [46]. 2-AG is hence thought to play a physiological role 
distinct from that of anandamide in psychotic disorders, anan-
damide having a stronger effect on GABA and dopamine release 
than on glutamate release. 

 Patients with schizophrenia present higher than normal serum 
and cerebro-spinal fluid concentrations of anandamide [26]. This 
seems to be due to the fact that stimulation of dopamine D2 recep-
tors produces the release of endocannabinoids [34], via striatal me-
dium GABAergic neurons, which retroactively counteract the ef-
fects of dopamine. Typical antipsychotics reduce this excess of 
anandamide by specifically antagonizing D2 receptors, which is 
suggested to explain the negative correlation between psychotic 
symptoms and anandamide levels highlighted by some authors. 
[26]. A detailed description of the endocannabinoid system is pre-
sented in other papers published in the present issue. 

Physiological Effects of Endocannabinoids 

 The activation of CB1 receptors in humans reproduces all of the 
main classical effects observed with cannabis use (euphoria, anxiety 
[47], decreased pain sensation, increased appetite, and dry mouth). 
The activation of CB2 doesn’t produce these same effects, as these 
receptors are mostly present at the peripheral level. Cannabinoids 
inhibit the release of GABA in the corpus striatum [48] and of 
GABA and glutamate in the other nuclei [43]. A possible function 
of the endocannabinoid system is the inhibition of tonic release of 
glutamate in the substancia nigra and regularization of levels of 
basal motor activity [49]. Exogenous cannabinoids can suppress 
GABA release in the substancia nigra that decreases inhibitory 
signals towards the thalamic-cortical pathways and causes a subse-
quent inhibition of movement. The near absence of cannabinoid 
receptors in the brain stem explains the non-lethal character of 
acute cannabis intoxication.  

 Endocannabinoid excess or prolonged cannabis use produce an 
excess of dopamine in the mesolimbic lobe, but a reduction of do-
pamine level at the prefrontal level, which mirrors the neurochemi-
cal states seen in schizophrenia. In the brain of patients with 
schizophrenia, it was shown that there is an approximately 64% 
increase in CB1 receptor binding in the anterior cingulate cortex 
[50], a part of the brain involved in cognitive and emotional proc-
esses.  

 The cognitive effects of cannabis use in healthy subjects, pa-
tients with schizophrenia and their siblings are well described [6, 
12]. The deficits in working memory, attention and information 
retrieval caused by long term cannabis use are similar to those seen 
in patients with schizophrenia, [51]. Memory deficits associated to 
acute expositions to cannabis may be explained by the inhibition of 
GABA and glutamate release in the hippocampal circuit because of 
the reduction of CB1 receptor expression.  

 Cognitive impairments caused by cannabis are usually transient 
and dose-dependant [52]. There is little evidence that the cognitive 
effects due to cannabis use persist after a period of abstinence in 
healthy subjects [53]. Interestingly, some studies have shown that 
cannabis use prior to a first psychotic episode might be predictive 
of a better cognitive function [54] and a recent meta-analysis have 
suggested that use of cannabis in patients with schizophrenia is 
related to superior cognitive performance compared to non users 
[55]. Nevertheless, it is well known that cannabis use increases 
relapse rates and decreases the duration of symptom-free periods in 
patients with psychosis [56]. Reasons for this effect include a sig-
nificant reduction in compliance to treatments and alterations in the 
response to medication. Accordingly, patients with schizophrenia 
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and comorbid cannabis use appear to have more positive symptoms 
[57]. Premorbid and experimental cannabis exposures have also 
been related to a greater positive symptomatology [58, 59]. In con-
trast, a number of studies have reported reductions in negative 
symptoms of patients with schizophrenia and comorbid cannabis 
use, showing that the effects of cannabis on psychotic symptoms 
cannot be considered as all-white or all-black [60].  

NEUROIMAGING 

 In healthy samples, some studies have shown that cannabis use 
may be associated with significant reductions in hippocampus and 
amygdale volumes, in gray matter density in right parahippocampal 
gyrus and in white matter density in the left parahippocampal gyrus 
[61]. Additionally, the use of cannabis in young healthy subjects 
has been recently associated with a decreased gyrification pattern of 
the brain, showing bilateral decreased concavity of the sulci and 
thinner sulci in the right frontal lobe [62]. These results may sug-
gest that cannabis use in adolescence and early-adulthood might 
involve a premature alteration in cortical gyrification similar to 
what is normally observed at a later age, probably through disrup-
tion of normal neurodevelopment. Functional neuroimaging has 
shown that resting global and prefrontal blood flow are lower in 
cannabis users than in controls [63] with inconsistent results in 
activation studies. Surprisingly, these changes did not seem to have 
a significant impact on performances in neuropsychological testing 
[64]. Functional neuroimaging studies in healthy volunteers have 
further suggested different cannabinoids (i.e. THC and CBD) exert 
opposite/distinct modulation of the neural networks underlying 
cognitive [65, 66] or emotional [67] processes. There is additional 
evidence indicating cannabinoids can significantly affect effective 
connectivity between brain areas implicated in the above processes 
[68]. 

 The imaging alterations produced by cannabis use in patients 
presenting a first psychotic episode are more controversial. How-
ever, some recent studies have shown significant changes, such as 
the enlargement of lateral ventricles [69]. Some of the brain regions 
where activity was reduced in patients with a first psychotic episode 
and comorbid cannabis use were the limbic and paralimbic cortices 
[70-72]. Recently, a case-control study that used Magnetic Reso-
nance Imaging (MRI), has reported the different impacts of canna-
bis use on the frontal and parahippocampal regions of the brains of 
patients with schizophrenia, cannabis consuming healthy siblings 
and healthy cannabis-users. The thinning of these regions in pa-
tients and siblings, but not in controls, supports the existence of 
gene-environment interactions in psychosis [73]. Detailed discus-
sion of neuroimaging findings in cannabis users and psychotic sub-
jects are presented in other papers published in the present issue. 

CANNABIS USE AND PSYCHOSIS LIABILITY 

 Scientific evidence suggests that the expression of schizophre-
nia is brought by a combination of environmental factors and ge-
netic susceptibility [14], in such a way that in a complete absence of 
environmental factors, the illness would not be expressed. This 
should be reflected by associations between the risk of psychosis in 
cannabis users and psychosis liability, expressed by family back-
ground or intermediate phenotypes.  

 Apart from the above-mentioned neurocognitive deficits and 
effects seen on neuroimaging, other psychosis endophenotypes 
have been studied in relation to the use of cannabis. Interestingly, 
variations in the increase in neurological soft signs (NSS or minor 
neurologic signs) have been observed in relation to cannabis use in 
schizophrenia, suggesting that the incidence of NSS is lower in 
individuals with psychosis and comorbid cannabis use [74, 75 ]. 
This result may be attributed to a higher release of dopamine in 
certain areas of the brain in cannabis users. 

 An interesting phenotype is the age of onset of the psychotic 
illness, as an earlier onset may indicate a possible association with 

underlying genetic liability to schizophrenia [76, 77] and age of 
onset has a high heritability in patients with schizophrenia [78]. The 
association between cannabis use and an earlier age of onset of the 
illness has been consistently replicated in retrospective studies, first 
episode psychosis patients [79-82] and at risk mental state samples 
[83], although it was not present in all the studies [84]. These re-
sults are in accordance with the notion that cannabis use in adoles-
cence may play a role in neurodevelopment because of changes in 
the endocannabinoid system and dopamine sensitization [37].  

 An additional finding on the effects of cannabis use and psy-
chosis vulnerability is a greater psychotogenetic effect of cannabis 
use in patients with schizophrenia who have a family history of 
psychosis, suggesting that genetic inheritability together with expo-
sure to exogenous cannabinoids can both contribute to the patho-
genesis of schizophrenia [85]. Additionally, an earlier use of canna-
bis was shown to increase the effect of this combination of factors, 
suggesting an association with cerebral maturation in younger pa-
tients depending on their genetic heritage. Accordingly, healthy 
siblings of patients with psychotic disorders have shown more 
schizotypical symptomatology after consuming cannabis, than 
healthy controls [86], suggesting that inclusion of genetic modera-
tion may be necessary to elucidate specific neurobiological mecha-
nisms. 

 In addition, it has been suggested that individuals with first 
degree relatives suffering from schizophrenia have a higher risk of 
contracting psychiatric disorders if they become cannabis users than 
individuals without a family history of psychotic disorders [87]. 

 Contrarily to these results, it has been previously suggested that 
cannabis use as a risk factor in the development of schizophrenia 
could be independent from genetic predispositions [88]. However, 
more recent studies have shown that vulnerability to schizophrenia 
could not be necessary for cannabis users to develop psychotic 
symptoms, but that the combination of vulnerability and cannabis 
use greatly potentiated the risks [12].  

ENVIRONMENTAL FACTORS UNDERLYING THE EF-
FECT OF CANNABIS IN FIRST EPISODE PSYCHOSIS 

 The predominant role of genetic factors in the etiology of 
schizophrenia has been formerly defined by classical twins’ studies, 
which have shown substantial heritability for liability to schizo-
phrenia [89, 90]. However, referring to schizophrenia, the estimated 
concordance rates are 41-65% in monozygotic twins [91], which 
highlights the role of environmental factors in disease etiology; as a 
result, gene-environment or environment-environment interactions 
may underlie this association [92]. Additionally, there is evidence 
that familial association of psychotic disorders is greater in risk 
environments such as urban environment or minority groups [14].  

 To date there is evidence for at least five (proxy) environmental 
factors that may contribute to genetic factors in the development of 
psychosis: cannabis, urbanicity, minority status or discrimination, 
early adolescent or childhood trauma, and prenatal environment 
[93]. Some of these environmental factors have additionally been 
shown to involve cumulative effects interacting with cannabis use 
on genetic psychotic risk, mainly urbanicity and childhood expo-
sure trauma [94]. Environmental risk factors involved in illness 
etiology could be separated into environmental factors that predis-
pose to disease, mainly childhood or prenatal exposures like vita-
min deficiency, obstetric complications, viral infections or child-
hood trauma and disease precipitating factors. In this group, we can 
include toxic exposure, immigration, and urbanicity. Environmental 
factors may act synergistically on the same final common pathway, 
with a more than additive interaction [95] 

 Childhood trauma has been reported to more prevalent in pa-
tients with psychosis compared to controls, although the causal 
association has not been consistently demonstrated [96]. Interest-
ingly, a study by Houston et al showed a significant interaction 
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between early exposure to cannabis and childhood sexual trauma. 
In a more recent report, this group explored the multiplicative effect 
of these variables on a large community sample and found that 
sexual trauma was associated with an increase in the risk of devel-
oping a diagnosis of psychosis but only in those individuals who 
had used cannabis before the age of 16 years [97]. Further studies 
support the hypothesis about childhood maltreatment and cannabis 
interaction increasing psychotic risk, suggesting that the psychosis-
inducing effects of cannabis were stronger in individuals exposed to 
earlier sexual or physical mistreatment [95] and that the presence of 
both childhood trauma and early cannabis use may increased the 
risk for psychotic symptoms beyond the risk associated to either 
risk factor alone [98]. Exposure to trauma may occasionally cause 
abnormalities in neurotransmitter system and structural brain 
changes [99] that may predispose to the psychotogenetic effect of 
cannabis use. Psychotic reactivity to stress may result from a sensi-
tization process through which previous exposure to stress sensi-
tizes people to stresses of daily life [100]. These findings may sug-
gest that the additive effects may result from a cross-sensitization 
process between repeated exposure to stress and THC. Consistently, 
studies in rodents have shown that stressful conditions induce 
higher increases in dopamine uptake induced by THC [101]. Sev-
eral studies have replicated this additive interaction [95, 98, 102], 
although negative results have also been reported. 

 Notwithstanding, replication studies on the interaction between 
cannabis and childhood trauma have also provided negative results 
[103]; these differences could be due to sampling variation or dif-
ferent time of follow-up.  

 Growing in an urban environment has been consistently associ-
ated with psychosis [93, 104]. The effect of urban environment has 
been proposed to be mediated by an interaction between individual 
and social fragmentation [105]. Additionally, it has been suggested 
that urban exposure may impact on risk for psychosis by causing an 
abnormal persistence of a developmentally common expression of 
psychotic experiences [106]. A recent study has reported a signifi-
cant interaction between cannabis and urbanicity [107] in a general 
population. The effect of cannabis use on psychotic symptoms was 
stronger in subjects who grew in an urban environment compared 
with those from rural surroundings. This interaction can be ex-
plained by synergic mechanisms, as both factors may increase do-
pamine sensitization [93, 107].  

 Interestingly, it has been shown that whereas negative symp-
toms in general population may be related to a profile of develop-
mental impairment, positive symptoms experiences are associated 
to environmental risk factors such as cannabis exposure, urbanicity, 
self-reported trauma, and lower educational level [108] and only 
negative symptoms, when combined with these environmental ex-
posures, results in positive psychotic symptoms increasing the risk 
of impairment and clinical relevance. In this regard, cannabis use, 
childhood trauma and urbanicity may act additively, and the level 
of environmental risk combines synergistically with non-clinical 
developmental expression of psychosis [94].  

 Taken together, these findings suggest that environmental risks 
for psychosis act additively, and that the level of environmental risk 
combines synergistically with non-clinical developmental expres-
sion of psychosis to cause abnormal persistence of psychotic symp-
toms. This highlights the role of gene-environment multilevel inter-
actions in the pathogenesis of psychosis. 

GENETIC FACTORS UNDERLYING THE EFFECT OF 

CANNABIS IN FIRST EPISODE PSYCHOSIS 

 The discussed gene variants have been summarized in Table 1. 

-COMT Genetic Variants 

 As it has been previously stated, the exposure to CB1 agonists 
such as THC may influence the proposed dopaminergic pathways to 
psychosis, in both the subcortical and the cortical pathways. In this 

regard, genetic variants influencing dopamine systems have been 
proposed to interact with cannabis use in the development of psy-
chosis.  

 The COMT gene encodes the enzyme Catechol-O-Methyl-
transferase, directly involved in the catabolism of dopamine [109]. 
The function of the COMT enzyme is particularly important in the 
prefrontal cortex [110, 111], but it has also been shown to regulate 
dopaminergic transmission in the midbrain by an indirect effect 
mediated by prefrontal feedback.  

 The COMT gene contains a common functional polymorphism 
(Val158Met, rs4680) that involves a Met to Val substitution at 
codon 158 and results in 2 allelic variants, the Valine (Val or H, 
high activity) allele and the Methionine (Met or L, Low activity) 
allele. The COMT Val158Met polymorphism had been initially 
postulated as an accepted candidate gene for schizophrenia, how-
ever, recent meta-analyses have questioned this association [112]. 
With regard to intermediate phenotypes, COMT Val158Met poly-
morphism has been associated with cognitive performance [110], 
structural abnormalities of the brain [69], neurophysiologic markers 
[113] and several clinical traits such as aggressiveness [114], and 
psychotic symptoms [115]. 

 Additionally, other polymorphisms within the COMT gene 
have been shown to have an impact on the COMT enzyme function, 
suggesting that the association between COMT and schizophrenia 
may be more complex than was previously thought [111]. In this 
regard, a three marker haplotype (including rs165688, rs737865 and 
rs165599, related to mRNA expression) has been associated to 
schizophrenia risk [116] and prefrontal cortex inefficiency [117]. 

 The first study reporting a Gene-Environment Interaction was 
the Dunedain Study, performed by Caspi et al [118]. In this study, 
the COMT Val158Met polymorphism was found to moderate the 
risk of developing schizophreniform disorder at 26 years in subjects 
who were cannabis users during adolescence. Adolescent cannabis 
use was associated with an increased risk in adulthood among 
Val/Val individuals (OR: 10.9) and, to a lesser extent, among 
Val/Met individuals (OR: 2.5), but not in Met/Met individuals. 
Accordingly, cannabis use was associated with psychosis symptoms 
and hallucinatory experiences in the Val/Val and Val/Met individu-
als, but not among Met/Met subjects. The results were not altered 
after controlling for the use of cannabis or other drugs in adulthood 
and the polymorphism was not related to cannabis use or to psycho-
sis by itself, discarding a gene environment correlation.  

 Soon afterwards, Henquet et al [119] performed an experimen-
tal study of Delta-9-TetraHydroCannabinol (THC) exposure in 
patients with psychosis and healthy controls. Carriers of the Val 
allele were more sensitive to Delta-9-THC induced psychotic expe-
riences, and memory and attention impairments. Interestingly, the 
effects on psychotic experiences were conditional on prior evidence 
of psychosis liability, so the authors proposed that the association 
between cannabis and psychosis may represent higher order gene-
environment (i.e.: Val158Met x Cannabis interaction) and gene-
gene interactions (i.e.: Val158Met x Liability). A second study 
from this group [120] evaluated the effects of interactions between 
COMT Val158Met genotype and exposure to cannabis with a struc-
tured diary technique in patients with a psychotic disorder and 
healthy subjects. Again, carriers of the Val158 allele but not the 
Met158 homozygote subjects showed an increase in hallucinations  
 

after cannabis exposure. This effect was also conditioned on prior 
evidence of psychometric psychosis liability. The authors suggest 
that the Val allele, associated with lower levels of prefrontal dopa-
mine may exhibit less tonic inhibition of mesolimbic phasic dopa-
mine, a system related to regulation of salience assignment. How-
ever, neither cannabis nor the COMT Val158Met genotype alone 
may be sufficient to influence this regulation in order to bring a 
clinical impact. Even this interaction would only arise in the pres-
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ence of previous liability and therefore a pre-existing hyperdopa-
minergic or sensitized dopaminergic system.  

 Zammit et al. [121] tried to replicate these results in a case-only 
design and failed to find a differential effect of cannabis use in 
psychosis risk according to variations in the Val158Met polymor-
phism in COMT and other single nucleotide polymorphisms. How-
ever, the quality of data on cannabis use was limited in this study. A 
new study from this group [122] examined the risk of developing 
psychotic symptoms in a longitudinal follow up of an epidemiol-
ogical cohort (followed from ages 7.5 to 16 years). The study 
showed further evidence of the association between cannabis use 
and subsequent onset of psychotic symptoms (OR: 2.5) but failed to 
find evidence of interaction under a multiplicative model between 
cannabis and COMT genotype in Val158Met polymorphism 

(rs4680) or other known COMT polymorphism genotypes 
(rs737865, rs2097603, rs6269, rs4818, rs165599 or the haplotype 
conformed by rs6269, rs4818 and rs4680). A proposed explanation 
by the authors was that psychotic symptoms were evaluated at age 
16, compared to age 26 in the Dunedain study. This may suggest 
that the differential effect of cannabis becomes evident only after a 
more chronic use of the substance. Accordingly, a study in COMT 
knockout mice [123] showed that Exposure to THC during adoles-
cence induced a larger increase in exploratory activity, greater im-
pairment in spatial working memory, and a stronger anti-anxiety 
effect in COMT Knockout than in Wild Type mice, with no effect 
on novel object recognition and social behaviour. No such effects 
were evident for any behaviour after adult THC administration. 
These findings indicate processes through which adolescent THC 

Table 1. Summary of Genes Underlying Cannabis Effects in First Episode of Psychosis 

Gene 
Affected poly-

morfism 
Activity Outcomes (interaction effects with cannabis use) 

rs4680 Met to Val substitution at codon 158. Two 

allelic variants: Val or H, high activity and 

Met or L, low activity.  

Associated to cognitive performance brain 

structural volumes and clinical symptoms in 

psychosis 

Higher psychosis risk in Val/Val and Val/Met individuals. [118] 

Negative results in higher psychosis risk [121, 122] 

Carriers of Val are more sensitive to delta-9-THC, conditional on 

prior psychosis liability [119, 120] 

Earlier age of onset of psychosis [82, 126] 

Longer duration of untreated Psychosis [82] 

Negative results in affective symptoms [124] 

Exposure to THC in adolescent COMT knockout mice produce a 

higher expression of psychosis phenotype [123] 

rs165688 

rs737865 

rs165599 

Negative results in higher psychosis risk [122] 

 

COMT gene 

rs6269 

rs4818 

rs4633 

rs4680 

Involved in dopamine catabolism and 

mRNA expression  

Patients with a Met158 homozygote genotype at rs4680 doubled 

the probability of cannabis use [127] 

CNR1 gene rs1049353 Regulate striatal dopamine. Modulate effects 

of exogenous cannabis 

Negative association with risk of psychosis [121] G allele 

schizophrenia patients carriers are more sensitive to the effect of 

cannabis in temporal lobe WM volumes [129] 

AKT1 gene rs2494732 

rs3730358, 

rs1130233 

Protein kinase involved in cellular functions.  

Haplotype associated with worse perform-

ance on the N-back task 

Cannabis use interact with AKTI rs2494732 genotype to affect 

CPT (Continuous Performance Test) reaction time and CPT 

accuracy [133] 

BDNF gene rs6265 Val66Met. Encoded brain derived neurotro-

phic factor a protein which encourage the 

growth and differentiation of neurons. 

D9-THC was shown to up-regulate BDNF 

mRNA in the hippocampus of mice 

Met66 allele has been associated with the 

age of onset of psychosis 

In female patients, cannabis use was associated with earlier age 

of onset of psychosis in BDNF Met66-carriers [142] 

NRG1gene 

(experimental) 

Nrg1HET mice. 

Nrg1WD mice 

Encodes neuregulin 1, which act in Epider-

mic Grow Factor Receptors (EGFR). 

Candidate gene for schizophrenia, related to 

neurodevelopmental processes. 

Nrg1 HET mice are more sensitive to the behavioral effects of 

the main psychoactive constituent of cannabis, Delta(9)-

tetrahydrocannabinol (THC) after stress interaction [146,147] 
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exposure could result in deleterious effects on several aspects of 
normal, adult functioning that are disrupted in schizophrenia, and 
that could be modulated by the COMT genotype.  

 Kantrowitch et al. [124] also reported negative results for the 
association between COMT Val158Met genotype, cannabis use and 
affective symptoms in patients with a diagnosis of schizophrenia, 
schizoaffective disorder or Psychosis Not Otherwise Specified 
(PNOS) independently of the ethnic origin. 

 Given the possible interaction between Cannabis use and 
COMT Val158Met Polymorphism, our research group performed a 
study in patients with a first episode of non affective psychosis with 
the aim of evaluating the effects of an interaction between the 
Val158Met genotype and premorbid cannabis use [82]. In our 
study, the premorbid use of cannabis was again associated with an 
earlier age of onset in the first episode and the cannabis use modu-
lated the effect of the genotype. Patients with a Met158 homozy-
gote genotype showed a later age of onset compared to other geno-
types but the use of cannabis seemed to suppress the delaying effect 
of Met158 allele. Additionally, the results showed an interaction 
between the genotype and cannabis in the duration of untreated 
psychosis (DUP). Patients with a Val158 Homozygote genotype 
showed longer DUPs in the absence of premorbid cannabis use, but 
this effect was moderated in the case of cannabis users. The asso-
ciation between the Val158 allele and longer DUPs may be ex-
plained by a relation with negative symptoms, previously reported 
in our sample of patients with a first psychotic episode [125]. The 
reduction of DUP in Val158 homozygote patients who used canna-
bis could be explained by an increase of psychotic symptomatology 
(particularly in the SAPS hallucinations item) that would lead the 
patients or their families to an earlier use of medical resources.  

 A recent study on a sample of patients with recent onset psy-
chosis also showed an interaction effect between the COMT 
Val158Met polymorphism and both lifetime cannabis use and age 
at first cannabis use as predictors of age of onset of psychiatric 
disorder, in the same way as previous studies had shown [126]. 
Additionally, although the effect of cannabis use on age of onset 
was similar in schizophrenia and other psychiatric illness the effect 
of the genotype and the interaction appeared to be specific to 
schizophrenia spectrum disorders. This would indicate that these 
patients are more sensitive to the effect of cannabis on the regula-
tion of dopaminergic systems due to their genetic background.  

 Finally, a recent study found an association between four com-
mon polymorphisms of the COMT gene (rs6269, rs4633, rs4818 
and rs4680 and three common haplotypes defined by these) and 
lifetime cannabis use in patients with schizophrenia [127]. In this 
study, the low activity COMT variants were associated with canna-
bis use and the patients with a Met158 homozygote genotype at 
rs4680 doubled the probability of cannabis use compared to Val158 
homozygous. These results are in contrast with previous studies that 
showed no association between cannabis use and COMT genotype.  

-Other Genetic Variants 

 It is unlikely that variations in a single gene account for the 
differential sensitivity to THC in individuals at risk for psychosis. 
As some of the previous studies have shown that psychosis liability 
may condition the interaction between cannabis and COMT, this 
suggests that gene-gene interactions may underlie the association 
between cannabis and psychosis [92]. Candidate genes for this in-
teraction should be related to the endocannabinoid system, and 
other systems associated with it, such as the dopaminergic system.  

 In the first study from Zammit et al. [121], the rs1049353 
polymorphism from the cannabinoid receptor 1 gene, CNR1, was 
studied. Although no associations or interactions were reported 
between CNR1, schizophrenia and cannabis use, this is a gene of 
interest as it has been suggested to regulate striatal dopamine as 
well as modulate the effects of exogenous cannabis [128]. In a re-

cent study, Ho et al. [129] evaluated the interaction between 12 
CNR1 tag polymorphisms and cannabis use on brain volume and 
cognitive function among patients with schizophrenia. CNR1 
rs12720071 G allele carriers, rs7766029 C Homozygotes and 
rs9450898 C homozygotes were associated with smaller white mat-
ter (WM) brain volumes. Additionally, rs12720071 G allele carriers 
appeared to be especially vulnerable to the effect of cannabis in 
parietal lobe WM volumes and on impairing problem solving skills. 
The potential role of these three polymorphisms is unknown to date, 
as they are located on introns or within the untranslated region of 
exon 4 of the gene. The observed abnormalities associated with this 
polymorphism may be related to a Linkage Disequilibrium with 
known functional variants or to yet unknown direct or regulatory 
effects in the gene. 

 A second gene related to schizophrenia and cannabis use is 
AKT1, a protein kinase involved in cellular functions including 
stress, cell-cycle regulation and apoptosis [130]. Additionally, it is 
involved in molecules downstream of D2 dopamine [131] and sev-
eral studies suggest a genetic association with schizophrenia [132]. 
Cannabinoids may activate the AKT1/GSK3 pathway, activating 
CB1 and CB2 receptors in vitro and phosphorylating AKT1 [131]. 
An AKT haplotype consisting of rs3730358, rs1130233, and 
rs2494732 G-A-C alleles was associated with worse performance 
on the N-back task in healthy subjects [132]. Accordingly, an inter-
action has been observed between cannabis use and AKT1 
rs2494732 genotype in CPT (continuous performance test) reaction 
time and accuracy, showing that cannabis user patients and the C/C 
genotype were slower and less accurate in the test, whereas users 
with a T/T genotype had similar performance than cannabis non-
users [133]. As performance in CPT in related to prefrontal dopa-
mine functioning, these results are in agreement with the notion that 
AKT1 modulates dopamine prefrontal functioning and may suggest 
that the cannabis effects in psychosis may be mediated by dopa-
mine prefrontal-striatal interactions. The interaction was also pre-
sent in patients without use in the last 12 months, but absent in 
unaffected siblings and healthy control. Additionally no effects 
were observed in verbal memory.  

 Another gene studied in schizophrenia in relation with cannabis 
and psychosis is the Brain-derived neurotrophic factor (BDNF) 
gene, a neurotrophine implied in the development of mesolimbic 
dopaminergic neurons [134] and in the modulation of dopamine, 
glutamate, serotonin and GABA [135]. BDNF and cannabis signal-
ling both involve the AKT1-GSK3 pathway downstream of their 
receptors--TrkB receptors--, which are transactivated by endocan-
nabinoids [136]. Cannabinoids may alter BDNF expression via the 
extracellular signal-regulated kinase (ERK) signalling pathway, as 
the injection of D9-THC was shown to up-regulate BDNF mRNA 
in the hippocampus of mice [137]. In agreement with these find-
ings, BDNF serum levels have been shown to be increased in 
healthy subjects [138] and drug naive patients with a first episode 
of psychosis after use of cannabis [139], but decreased in chronic 
users, suggesting an implication of CB1 down regulation and the 
possibility of gene–environment interactions between cannabis and 
the BDNF Val66Met genotype. A Val to Met substitution at codon 
66 (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, 
results in less efficient intracellular trafficking and decreased activ-
ity-dependent BDNF secretion [140]. The Met66 allele has been 
reported to be associated with the age of onset [141] in patients 
with schizophrenia and a BDNF-sex-cannabis interaction has been 
shown [142]. Cannabis use predicted an earlier age of onset in male 
patients independently of genotype, whereas in female patients, 
cannabis use was only associated with age of onset in BDNF Met-
carriers. These results would be in agreement with earlier studies in 
which BDNF excretion was shown to be an adaptative response to 
psychotogenic effects of THC, although it was only demonstrated 
in female subjects [137-139]. 
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 Finally, two experimental studies have been published suggest-
ing Neuregulin 1 gene (NRG1) as a candidate gene to be involved 
in the gene-cannabis interaction in schizophrenia. NRG1, a candi-
date gene for schizophrenia [143], is a ligand for the ErbB receptor 
Tyrosin Kinases, related to neurodevelopmental processes in 
schizophrenia, including myelination, axon guidance, neuronal 
migration and glial differentiation [144]. Mutant mice heterozygous 
for the trasnmembrane domain of NRG1 (Nrg1 HET mice) have 
demonstrated to exhibit a schizophrenia related behavioural pheno-
type and a deficit in NMDA receptor expression [145]. In a first 
study, HET mice were more sensitive to the locomotor suppressant 
and anxiogenic effects of THC than wild type-like (WT) mice and 
had facilitated sensoriomotor gating measured by prepulse inhibi-
tion [146]. In a second study, using c-Fos inmunohistochemistry to 
examine the effects of THC on neuronal activity, exposure to THC 
brought a greater increase in c-Fos expression in Nrg1 HET mice 
compared to WT mice in the central nucleus of the amygdala, in the 
bed nucleus of the stria terminalis and in the paraventricular nu-
cleus of the hypothalamus [147]. Interestingly, THC selectively 
increased c-Fos expression in the lateral septum of Nrg1 HET mice 
but not in WT mice. This effect was shown to interact with stress, 
which was necessary in order to observe these effects. All these 
results indicate that NRG1 genotypes may alter the sensitivity to 
neurobehavioural effects of THC under conditions of stress and 
suggest new possible gene-interaction studies in clinical samples of 
patients with psychosis and comorbid cannabis use.  

-SUBJECTS AT ENHANCED CLINICAL RISK (HR) FOR 

PSYCHOSIS 

 Over the recent years, a growing research interest has focused 
on the so-called ‘putatively prodromal stage of schizophrenia’. A 
number of terms have been proposed to describe this pre-psychotic 
phase (which thereafter we call clinical high risk state, HR), includ-
ing “ultra high risk (UHR)”, “at risk mental state (ARMS) [148], or 
simply “high risk”. Two broad sets of criteria have been used to 
diagnose the CHR state: the “ultra high risk (UHR)” and the “basic 
symptoms (BS)” criteria [149]. These criteria are considered valid 
in help seeking individuals usually aged 8-40. The UHR criteria 
have been the most widely applied in the literature to date and in-
clusion requires the presence of one or more of: 1. attenuated psy-
chotic symptoms (APS), 2. brief limited intermittent psychotic 
symptoms (BLIPS), 3. trait vulnerability plus a marked decline in 
psychosocial functioning (Genetic Risk and Deterioration Syn-
drome: GRD), or 4. unspecified prodromal symptoms (UPS). BS 
are subjective experiences of disturbances of thought processing, 
language and attention. These experiences are distinct from classi-
cal psychotic symptoms in that they are independent of abnormal 
thought content and reality testing; also insight into the symptoms’ 
psychopathological nature is intact [150]. The HR state is associ-
ated with an enhanced but not inevitable risk of developing a psy-
chotic episode over the following years. In a recent meta-analysis of 
about 2500 HR subjects, it was shown that there was a mean transi-
tion risk, independent of the psychometric instruments used, of 18% 
after six months of follow-up, 22% after one year, 29% after two 
years and 36% after three years [151]. The HR state is characterized 
by depressed mood, anxiety, irritability and sub-threshold or at-
tenuated psychotic symptoms [152-154]. Cognitive impairment is 
subtle but significant as compared to matched healthy controls and 
is associated with alterations in the structure [155, 156], function 
[157], or brain chemistry [158-160]. 

 The impact of cannabis use in this dynamic phase is still un-
clear but may play a crucial role affecting the longitudinal risk to-
wards psychosis transition. Of the four studies that examined ef-
fects of cannabis use on transition to a first episode of psychosis 
from a HR state [83, 161, 162], only one study reported a signifi-
cant association [163]. This study adopted a short follow-up time 
and enrolled HR subjects with a previous cannabis use disorder in 
remission or not in remission. These methodological caveats un-

dermine the significance of the results. The other negative studies 
employed longer follow-up and different definitions of cannabis 
abuse. Overall, these studies provide only very limited support for 
the theory that cannabis use is associated with transition to a first 
psychotic episode.  

 However, these results should be interpreted cautiously, in the 
light of the heterogeneity underlying the HR group. The HR sample 
is heterogeneous in terms of inclusion criteria (UHR vs. BS; Early 
vs. late HR criteria), presentation, clinical needs and outcome; it 
comprises individuals with true prodromal symptoms, false posi-
tives as well as subjects presenting with HR symptoms which will 
fully remit to remerge later during the follow-up period (outpost 
syndrome). Even within the so called “false positives”, some of 
them will continue to present impairment in functioning or other 
psychiatric problems at follow-up. Because of these problems it 
would be premature to conclude that cannabis abuse has no effect 
on psychosis transition in the HR individuals and future studies in 
the field are needed. 

CONCLUSIONS  

 Although cannabis use was consistently reported to be associ-
ated with psychosis, only a small proportion of cannabis users in 
the general population will develop a psychotic illness. Some of the 
factors implied in the onset of psychosis will be the age at which 
cannabis use was initiated and the amount of cannabis used in the 
vulnerability period. Also the genetic background of the individual 
(the psychosis liability) and other environmental factors that can 
modulate the sensitivity to cannabis and THC must be considered. 
The understanding of the underlying mechanisms in this interaction 
may help to increase the current knowledge on the pathogenesis of 
the illness and to design new therapeutic targets. Given the mecha-
nisms of action of THC and its relation to endocannabinoid and 
dopaminergic systems, the studies on gene-environment interaction 
in cannabis use and psychosis have included to date genetic factors 
involved in the regulation of these systems. Interactions with 
COMT polymorphisms in the development of psychotic symptoms, 
a first episode of psychosis or in the modulation of age of onset of 
the illness appears to be promising given the relation in the regula-
tion of prefrontal dopamine and the preliminary results. However, 
despite a considerable number of studies reported to date, a lack of 
reproducibility between studies has not allowed to replicate or re-
fuse results. A single genetic factor is unlikely to explain the com-
plex interactions between cannabis and psychosis and therefore, 
other genetic and non-genetic variants should be considered to be 
included in the Gene environmental interaction model for cannabis 
and psychosis. Some of the most promising genetic variants in this 
field are CNR1, BDNF, AKT1 and NRG1. Yet, most of the find-
ings related to these genetic variants have not been replicated or 
have not been studied in clinical samples yet. Additionally, other 
environmental factors involved in the interaction with the dopa-
minergic system or the vulnerability continuum such as stress 
should be included in the model. Further experimental and clinical 
studies are warranted to better understand the underlying mecha-
nisms explaining why cannabis may increase the risk of psychosis. 
Given the relation to the onset of the illness, studies on first epi-
sodes of psychosis and at risk mental states should play a predomi-
nant role in future research in order to avoid confounding bias asso-
ciated to chronicity and previous treatment.  

ABBREVIATIONS 

2-AG = 2-arachidonoyl-glycerol 

AKT1 = v-akt murine thymoma viral oncogene ho-
molog 1 

APS = Attenuated Psychotic Symptoms 

ARMS = At Risk Mental State 

BDNF = Brain-Derived Neurotrophic Factor 
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BLIPS = Brief Limited Intermittent Psychotic Symp-
toms 

BS = Basic Symptoms 

CB1 = Cannabinoid receptor type 1 

CB2 = Cannabinoid receptor type 2 

CHR = clinical High Risk state 

COMT = Catechol-O-Methyl Transferase 

CNR1 = Cannabinoid Receptor 1 (brain)  

CPT = Continuous Performance Test 

D2 = Dopamine receptor 2 

DSI = Depolarization-induced Suppression of Inhi-
bition 

DSE = Depolarization-induced Suppression of Exci-
tation 

DUP = Duration of Untreated Psychosis 

ERK = Extracellular signal-Regulated Kinase 

GABA = -AminoButyric Acid 

GRD = Genetic Risk and Deterioration Syndrome 

GSK3 = Glycogen synthase kinase 3 

HET = Heterozygous 

HR = High Risk  

MRI = Magnetic Resonance Imaging 

NMDA = N-Methyl-D-aspartic acid or N-Methyl-D-
aspartate 

NRG1 = Neuregulin 1 

NSS = Neurological Soft Signs 

PET = Positron Emission Tomography 

PNOS = Psychosis Not Otherwise Specified 

SPECT = Single Photon Emission Computed Tomo-
graphy 

THC = Tetrahydrocannabinol 

TrkB receptors = TrkB tyrosine kinase or BDNF/NT-3 growth 
factors receptor or neurotrophic tyrosine 
kinase, receptor, type 2 

UHR = Ultra High Risk 

UPS = Unspecified Prodromal Symptoms 

WM = White Matter 

WT = Wild Type 
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